Modulation of Vascular Endothelial Growth Factor and Tissue Necrosis Factor Alpha Using Ethanol Stem Bark Extract of Boswellia Dalzielii H. Attenuates Ethanol-induced Gastric Ulcer in Albino Rats

Anas Husainy Yusuf,1 Hamza A Salami,1 Maryam Babakura,2 Umar Kyari Sandabe,3 Nuhu Sambo,4 Abdulwasiu Abubakar1

1Department of Human Physiology, College of Medical Sciences, University of Maiduguri, Nigeria
2Department of Biological Science, University of Maiduguri Faculty of Medicine, Borno State, Nigeria
3Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Nigeria
4Department of Human Physiology, Bingham University Faculty of Medicine, Karu, Nigeria

Abstract

Objectives: The modulation of vascular endothelial growth factor, antioxidants, and tissue necrosis factor alpha (TNF-α) using ethanol stem bark extract of Boswellia dalzielii H. was evaluated in an ethanol-induced gastric ulcer albino rat model.

Methods: Thirty albino rats of either sex (200–250 g) were starved for 48 h but were allowed drinking water with 8% sucrose to avoid dehydration. At the end of the fasting period, the rats were equally divided and assigned to six treatment groups. Group A served as control and 5 ml/kg distilled water was orally administered to the rats without further treatment. Rats in group B were given 5 ml/kg distilled water and served as negative control. Rats in groups C, D, and E were pretreated with 100, 200, and 400 mg/kg of the ethanol stem bark extract of B. dalzielii H, respectively. Group F received 50 mg/kg ranitidine. After 1 h, all the rats in groups B–F were each given absolute ethanol 1 ml/200 g body weight of rat. All treatments were by intragastric lavage. One hour after the treatment with ethanol, all the rats in the experiment (groups A–F) were euthanized with an overdose of anesthetic ether and their stomachs were excised. The stomachs were cut along the greater curvature and washed in warm normal saline. Each stomach was stretched out and pinned on board.

Results: The results of the study revealed that pretreatment with ethanol stem bark extract of B. dalzielii H. decreased gross and histological gastric mucosal damage caused by intragastric administration of absolute ethanol in a dose-dependent manner when compared with controls. The gastric ulcer index and gastric tissue level of malondialdehyde (MDA) and TNF-α were significantly reduced (p<0.001), whereas the gastric tissue level of superoxide dismutase, catalase, total antioxidant capacity, and vascular endothelial growth factor (VEGF) was significantly increased (p<0.001) when compared with the controls.

Conclusion: The plant extract attenuated gastric mucosal damage induced by ethanol via upregulation in the expression of gastric tissue VEGF, reinforcement of the antioxidant system, and reduction in the gastric tissue level of MDA and the pro-inflammatory cytokine TNF-α.

Keywords: Antioxidants, ethanol, gastric ulcer, tissue necrosis factor alpha, vascular endothelial growth factor

Address for correspondence: Anas Husainy Yusuf, MD. Maiduguri Universitesi, Tip Fakultesi, Insan Fizyolojisi Anabilim Dalı, Maiduguri, Nigeria
Phone: +234 806 622 85 75 E-mail: anasyusuf2007@gmail.com
Submitted Date: November 14, 2017 Accepted Date: January 19, 2018 Available Online Date: February 05, 2018
©Copyright 2018 by Eurasian Journal of Medicine and Oncology - Available online at www.ejmo.org
The presence of bicarbonate, mucus, phospholipids, trefoil peptides, prostaglandins (PGs), and heat-shock proteins in and around the gastric lumen aid in the maintenance of gastric mucosal integrity and avert gastric mucosal damage.[1] These mucosal defenses can be breached by ethanol to induce gastric ulcer. Contact of gastric mucosal epithelium with ethanol results in the release of endothelins, decrease of nitric oxide synthase, and attenuation of nitric oxide synthesis that will lead to reduced blood supply to the gastric mucosal cells.[2, 3] Restriction of the microvascular circulation of the gastric epithelium ensures nutrient and oxygen deprivation to the affected mucosaes, accumulation of arachidonic metabolites, generation of reactive oxygen species, polymorphonuclear (PMN) infiltration and adhesions, depletion of gastric mucus, plasma leakages of sodium and potassium ions, and edema.[4-6] These unfavorable gastric activities may overwhelm the antioxidant capacity of the system, which lead to oxidative stress that could result in gastric cell membrane damage, apoptosis, exfoliation, epithelial erosion, and formation of gastric ulcer.[5] Tissue necrosis factor-α (TNF-α) along with apoptosis, exfoliation, epithelial erosion, and formation of antioxidant capacity of the system, which lead to oxidative stress. These activities favor gastric mucosal defense, and avert gastric mucosal damage.
The plant Boswellia dalzielii H. is a tree in the Sapindales order and Burseraceae family. It is a moderate-sized flowering plant and can grow up to 13 m in height. It has an outer pale paper-like or white to greyish bark that peels into flakes or looks like rags. The tree is native to the Savannah regions of West Africa, Ghana, Niger, North and Eastern Nigeria, Ivory Coast, and Upper Volta and is also abundant in the tropical regions of Africa and Asia (Danlami, et al., 2015).[10] The plant is called frankincense tree because of its outer pale paper-like or white to greyish bark that peels into flakes or looks like rags. The tree is referred to as Arrarabi or Hano in Hausa or Kaushi in Kanuri. Phytoconstituents in the stem bark of the plant include tannins, saponins, flavonoids, cardiac glycosides, sterols, and terpenes. Some other phytoconstituents are boswellic, oleanolic, triterpenoid, ursolic, and glycyrrhetic acids.[11] The stem bark of the plant is used to treat fever, rheumatism, and gastrointestinal problems. It is also used as an anticonvulsant[12] and for the treatment of asthma and various inflammatory conditions. Presence of penta-cyclic triterpenic acids such as boswellic acid confers on the plant the potential of anti-inflammatory, antiarthritic, antirheumatic, anti diarrheal, hypolipemic, antiasthmatic, anticancer, antimicrobial, and analgesic activities.[13, 14]
The aim of this study was to establish the gastroprotective capacity of the ethanol stem bark extract of B. dalzielii H plant and evaluate its antioxidant capacity and determine its modulatory potentials on gastric tissue levels of VEGF and TNF-α after ethanol-induced gastric ulcer in albino rats.

Methods

Animals: The albino rats used in this study were obtained from the animal house of the Department of Human Physiology, College of Medical Sciences, University of Maiduguri, Nigeria. The rats were kept in the same environment, fed with standard diet, and had free access to drinking water. All experimental protocols strictly adhered to standard animal care and guidelines of the Ethics Committee on Animal Experimentation, College of Medical Sciences, University of Maiduguri.

Chemicals: All chemicals used in this study were of ANALAR grade and obtained from BDH England except otherwise indicated.

Design of the Study and Induction of Gastric Ulcer in Rats Using Ethanol

Thirty albino rats of either sex (200–250 g) were starved for 48 h but were allowed drinking water with 8% sucrose to avoid dehydration. The rats were placed on wire gauze above the base of the cage to prevent coprophagy. At the end of the fasting period, the rats were equally divided and assigned to six treatment groups. Group A served as control and 5 ml/kg distilled water was orally administered to the rats without further treatment. Rats in group B were given 5 ml/kg distilled water and served as negative control. Rats in groups C, D, and E were pretreated with 100, 200, and 400 mg/kg of the ethanol stem bark extract of B. dalzielii H, respectively. Group F received 50 mg/kg ranitidine. After 1 h, all the rats in groups B–F were each given absolute ethanol 1 ml/200 g body weight of rat. All treatments were by intragastric lavage. One hour after the treatment with ethanol, all the rats in the experiment (groups A–F) were euthanized with an overdose of anesthetic ether and their stomachs were excised. The stomachs were cut along the greater curvature and washed in warm normal saline. Each stomach was stretched out and pinned on board.

Evaluation and Rating of Gastric Ulcer in Albino Rats

Gross changes observed on the gastric mucosa were evaluated and scored as follows: (i) grey coloration of stomach was rated as zero (0) mark, (ii) red coloration of stomach...
was scored 0.5, (iii) appearance of hemorrhagic streak was scored 1, (iv) pin head size was scored 1.5, (v) ulcer up to 2 mm was scored 2, and (vi) ulcer greater than 2 mm was scored 3.[15, 16]

The percentage of ulcer protection was determined as follows:

\[
\text{Ulcer protection (\%) = } \frac{\text{ulcer index of control} - \text{ulcer index of test}}{\text{Ulcer index of control}} \times 100\%
\]

Preparation of Gastric Tissue Homogenates for Antioxidants, VEGF, and TNF-α Assays

Gastric mucosal samples (500 mg) were obtained from the sacrificed rats. Each stomach was separately homogenized in 5 ml of cold (4°C) phosphate buffer saline (pH 7.4) using a homogenizer. The gastric tissue homogenates were centrifuged at 12,000xg for 10 min at 4°C. Antioxidants, VEGF, and TNF-α contents in the supernatants were determined using enzyme linked immunosorbent assay (ELISA).

Estimation of Catalase

Catalase was measured according to the method described by Aebi 17 using the Bio Vision's Catalase Colorimetric/Fluorometric Assay Kit was used according to manufacturer’s specifications (Biovision Inc. 155 S Mipitas Boulevard Mipitas, CA 95035 USA). The method is based on the principle that catalase reacts with H₂O₂ to produce water and oxygen. The unconverted H₂O₂ reacts with Oxi Red TM probe to produce a product that is incubated at 25°C for 10 min and measured at 570 nm in a plate reader (colorimetric method). Catalase activity is reversely proportional to the signal strength. The kit can detect ≤1 μU of catalase activity in tissue homogenates and serum samples.

Estimation of Superoxide Dismutase (SOD) in Gastric Tissue Homogenate

Spectrophotometric method was used for the assay of superoxide dismutase. The Cayman commercial assay kit (Cayman chemical, 1180 East Elsworth Road Ann Arbor, Michigan 48108 USA) was utilized according to manufacturer’s instructions. Superoxide radical generated by xanthine oxidases and hypoxanthine were detected by tetrazolium salts. One unit of SOD is defined as the enzyme required to show 50% dismutation of the superoxide radical. The activity was expressed as μmol/min/mg protein.

Estimation of Total Antioxidant Capacity (TAC) in Gastric Tissue Homogenate

The CUPRAC method was utilized in estimating total antioxidant capacity of gastric tissue homogenate. The Cell Biolabs’ OxiSelect™ TAC Assay Kit was used to measure the TAC of serum and gastric tissues (Cell Biolabs, Inc 7758 Arjons drive San Diego CA 92126). The protocol outlined by the manufacturer was followed. The TAC assay is based on the reduction of copper (II) to copper (I) by antioxidants such as uric acid. Upon reduction, the copper (I) ion further reacts with a coupling chromogenic reagent that produces a color with a maximum absorbance at 490 nm. The net absorbance values of antioxidants are compared with a known uric acid standard curve. Absorbance values are proportional to the sample’s total reductive capacity. Results are expressed as “μM Copper Reducing Equivalents” or mM Uric Acid Equivalents.

Estimation of Malondialdehyde

Malondialdehyde was estimated from Thiobarbituric acid reactive substance. Gasric tissue was homogenized in cold potassium chloride in a ratio of 1/10 in 1.15% (w/v). Four milliliter of Thiobarbituric acid (TBA)-Trichloroacetic acid (TCA)- Hydrochloric acid (HCl) reagent (1:1:1 ratio, 0.37% TBA, 0.25 N HCl and 15% TCA) was used to treat 0.2 ml of gastric tissue homogenate. The mixture was placed in boiling water for 15 min. The absorbance of clear supernatant was measured against blank at 535 nm. The values were calculated using molar extinction coefficient of chromophore (1.56×105 M⁻¹cm⁻¹).

Estimation of Vascular Endothelial Growth Factor (VEGF) in Rat Gastric Mucosa

The protein levels of VEGF in homogenized gastric tissues from both the ulcerated and non-ulcerated mucosa were measured using RayBio® Rat VEGF-A ELISA Kit according to the manufacturer’s protocol (Ray Biotech,3607 Parkway Lane, Suite 100 Norcoss, GA 30082). VEGF level was expressed as pg/mg of tissue.

Estimation of Pro-inflammatory Cytokine TNF-α in Rat Gastric Mucosa

The RayBio® Rat TNF-α ELISA kit was used for determination of TNF-α in rat gastric mucosa according to manufacturer’s instruction (Ray Biotech,3607 Parkway Lane, Suite 100 Norcoss, GA 30082). TNF-α present in a sample is bound to the wells by the immobilized antibody. The final product was incubated at room temperature. The absorbance was read at 450 nm. The TNF-α content was expressed as pg/mg of total protein.

Statistical Analyses

Results of this study were expressed as mean±standard error of mean. One-way analysis of variance (ANOVA) followed by Dunnet’s post hoc test was used to evaluate differences among the groups. All analyses were performed using JMP Statistical Discovery (software) from SAS, version 11.0. A p-value of <0.05 was considered statistically significant.
Results

Gross Appearance of Gastric Mucosa in Ethanol-induced Gastric Ulcer

Figure 1 shows the deleterious impact of oral administration of ethanol on gastric mucosa of rats. Slide A is a normal stomach with grey appearance of the surface lined up with rugae indicated by black arrow. Slide B is the macroscopic presentation of rat gastric mucosa treated with absolute ethanol. The surface area is reddish with erosion and has ulcer lesions all over the surface (black arrow), flattening of the entire surface, hemorrhagic band, petechial, pinpoint ulcer, and penetrating ulcer area greater than 2 mm. Pretreatment with graded doses (100, 200, and 400 mg/kg) of the ethanol stem bark extract of *B. dalzielii H* attenuated ethanol-induced damage in rat (slides C, D, and E) when compared with control (slide B). The cytoprotective activity of the plant extract was dose-dependent. The highest protection to the gastric mucosa was by 400 mg/kg of the extract, and the least protection was from 100 mg/kg of the extract. Slide 1F indicates the protective role of 50 mg/kg ranitidine on the gastric mucosa exposed to absolute ethanol. It diminished the size of gastric ulcer when compared with ethanol control.

Effect of the Ethanol Stem Bark Extract of *B. Dalzielli H* on the Gastric Histology in Ethanol-induced Gastric Ulcer

The photomicrographs in Figure 2 shows reduction in gastric ulcer sizes proportional to the doses (100, 200, and 400 mg/kg) of the extract. Slide A shows the mucosa of a normal rat without treatment. Slide B indicates the gastric mucosa of rat treated with absolute alcohol. Slides C, D, and E shows the mucosa (pylorus) of rats treated with 100, 200, and 400 mg/kg, respectively, of the ethanol stem bark extract of *B. dalzielli H* prior to oral intake of absolute ethanol in each group. H&E (×400).
of the ethanol stem bark extract of *B. dalzielii* H administered (black arrows). Slide A is the microscopic appearance of the gastric mucosa of a normal control rat that was administered with normal saline. It revealed a smooth pyloric epithelium without erosion, gastric ulcer, or glandular degeneration. Slide B depicts a deep and wide area of ulcerative lesion (black arrow) and eroded gastric mucus after oral administration of ethanol. Prior to intake of ethanol in groups C, D, and E, the rats were treated with graded doses (100, 200, and 400 mg/kg, respectively) of the ethanol stem bark extract of *B. dalzielii* H. Gastric mucosal damage by ethanol was attenuated by 100 mg/kg of the extract as shown by black arrows in slide C when compared with slide B (control). Further reduction in ulcer size and damage to the mucosal epithelium was achieved by 200 mg/kg of the extract (p<0.0001) when compared with normal control. Intake of 200 and 400 mg/kg of the extract also increased the SOD level above the ethanol control at 200 mg/kg, it increased the SOD level by 171.4%, whereas 400 mg/kg increased the SOD level in the gastric mucosa by 210%. These increases were significant (p<0.0001) when compared with normal control. Intake of 200 and 400 mg/kg of the extract also increased the SOD level above normal control (p<0.05). Similarly, ranitidine significantly increased the SOD level when compared with normal control (p<0.05) and ethanol control (p<0.0001).

Effect of Ethanol Stem Bark Extract of *B. Dalzielii* H on Gastric Tissue Antioxidants in Ethanol-induced Gastric Ulcer in Albino Rats

Single intragastric intake of absolute ethanol in rats causes a statistically significant reduction in the levels of SOD, CAT, and TAC (p<0.05) and increased MDA (p<0.0001) when compared with control as shown in Table 2. Pretreatment with oral graded doses of the ethanol stem bark extract of *B. dalzielii* H (100, 200, and 400 mg/kg) dose dependently and significantly attenuated the action of ethanol and increased the levels of the antioxidants. The extract at 100 mg/kg significantly (p<0.0001) when compared with normal control. Intake of 200 and 400 mg/kg of the extract also increased the SOD level above the ethanol control at 200 mg/kg, it increased the SOD level by 171.4%, whereas 400 mg/kg increased the SOD level in the gastric mucosa by 210%. These increases were significant (p<0.0001) when compared with normal control. Similarly, ranitidine significantly increased the SOD level when compared with normal control (p<0.05) and ethanol control (p<0.0001).

Table 1. Effect of the ethanol stem bark extract of *B. dalzielii* H on ethanol-induced gastric ulcer in albino rats

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Ulcer Index (mm)</th>
<th>% Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (5 ml/kg)</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Ethanol (absolute)</td>
<td>24.50</td>
<td>0</td>
</tr>
<tr>
<td>100 mg/kg</td>
<td>18.83</td>
<td>25.30</td>
</tr>
<tr>
<td>200 mg/kg</td>
<td>13.83</td>
<td>43.55</td>
</tr>
<tr>
<td>400 mg/kg</td>
<td>11.0</td>
<td>55.10</td>
</tr>
<tr>
<td>Ranitidine 50 mg/kg</td>
<td>9.66</td>
<td>60.57</td>
</tr>
</tbody>
</table>

Results are expressed as mean±SEM (n=5). One-way ANOVA along with Dunnets’ post hoc test were used for statistical comparison. *p<0.05 was considered statistically significant when compared with control.

Table 2. Estimation of in vivo antioxidant capacity of the ethanol stem bark extract of *B. dalzielii* H in ethanol-induced gastric ulcer in albino rats (tissue)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>SOD (μmol/min/mg protein)</th>
<th>CAT (mU/mL)</th>
<th>TAC (mM uric acid equivalents)</th>
<th>MDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.19±0.08b</td>
<td>1.07±0.08b</td>
<td>1.81±0.05c</td>
<td>1.60±0.2b</td>
</tr>
<tr>
<td>Ethanol Control</td>
<td>0.03±0.08a</td>
<td>0.55±0.08a</td>
<td>0.94±0.05d</td>
<td>7.21±0.2d</td>
</tr>
<tr>
<td>100 mg/kg</td>
<td>0.05±0.08ac</td>
<td>0.95±0.08</td>
<td>2.40±0.05ac</td>
<td>4.11±0.2ab</td>
</tr>
<tr>
<td>200 mg/kg</td>
<td>2.04±0.08ac</td>
<td>1.14±0.08b</td>
<td>2.95±0.05dc</td>
<td>3.82±0.2ac</td>
</tr>
<tr>
<td>400 mg/kg</td>
<td>2.50±0.08ac</td>
<td>1.59±0.08ab</td>
<td>3.62±0.05dc</td>
<td>3.30±0.2ac</td>
</tr>
<tr>
<td>Ranitidine 50 mg/kg</td>
<td>4.50±0.08ac</td>
<td>1.84±0.08ab</td>
<td>3.12±0.05dc</td>
<td>4.40±0.2ac</td>
</tr>
</tbody>
</table>

Results are expressed as mean±SEM (n=5). One-way ANOVA along with Dunnets’ post hoc test were used for multiple statistical comparison. a=significant when compared to control p<0.05, b=significant when compared to ethanol control (p < 0.05, c = significant when compared to ethanol control p <0.0001, d=significant when compared to control p<0.0001.
Increase in gastric tissue level of MDA caused by oral intake of ethanol was significant (p<0.0001) when compared to control. Oral intake of ethanol stem bark extract of 200 and 400 mg/kg B. dalzielii H prior to ethanol ingestion significantly reduced (p<0.0001) the gastric tissue level of MDA in rats, whereas 100 mg/kg of the extract also significantly attenuated (p<0.05) ethanol-induced increase in gastric tissue level of MDA. However, the decrease caused by the plant extract (at 100, 200, and 400 mg/kg) was significantly higher than the normal control (p<0.05). Administration of ranitidine in the study caused a significant decrease in the MDA level (p<0.05) when compared to control. It also caused a significant reduction when compared to ethanol control (p<0.0001) as presented in Table 2.

Effects of the Ethanol Stem Bark Extract of B. dalzielii H on Gastric Tissue VEGF in Ethanol-induced Gastric Ulcer in Albino Rats

Intragastric administration of absolute ethanol to rats (1 ml/200 g BDW) in this study significantly increased the expression of VEGF in a dose-dependent manner when compared with normal control (p<0.0001) and also when compared with ethanol control (p<0.0001) as presented in Figure 3.

Effects of the Ethanol Stem Bark Extract of B. dalzielii H on Gastric Tissue TNF-α in Ethanol-induced Gastric Ulcer in Albino Rats

Oral intake of absolute ethanol significantly elevated the gastric tissue level of TNF-α when compared with normal control (p<0.0001). Treatment with graded doses of the extract significantly downregulated the expression of TNF-α when compared to normal control (p<0.0001). The increase in tissue levels of the extract-treated groups was not significant when compared with normal control (p<0.05) as shown in Figure 4.

Discussion

The anti-ulcer, antioxidants, and immunomodulation potential of ethanol stem bark extract of B. dalzielii H was evaluated in ethanol-induced gastric ulcer albino rat model. Oral administration of absolute ethanol to rats (1 ml/200 g BWT) in this study caused extensive erosions with severe bleeding in the glandular stomach. It also showed multiple elongated hemorrhagic streaks and gastric ulcers of different shapes and sizes in the corpus mucosa along the long axis of the stomach of the ethanol control group (Fig. 1). Histological assessment of the ethanol control group revealed severe disruption of the surface epithelium, necrotic lesion that extended deep into the mucosa, and moderate acute inflammatory cells predominantly infiltrating in the submucosa along with dilated and congested vascular channels (Fig. 2). The gastric ulcer index (Table 1) was statistically significant when compared to normal control (p<0.001). This result is consistent with the findings of previous studies that reported severe disruption of the surface epithelium with noticeable gastric mucosal injury grossly and histologically after oral intake of ethanol in rats. The results of this study also show decreased SOD, CAT, GSH, and TAC levels (Table 2) with elevation in the MDA levels. Expressions of VEGF and TNF-α increased when compared with normal control (p<0.0001) in ethanol-induced gastric ulcer in albino rats. The result obtained is in accordance with previous studies that reported downregulation of enzymatic and non-enzymatic antioxidants. It was also reported that intragastric administration of absolute ethanol in rats increases the levels of VEGF, TNF-α, and MDA in gastric tissue homogenates. Pretreatment of rats with graded doses of the ethanol stem bark extract of B. dalzielii H provided cytoprotection, signifi-
cantly decreased (p<0.0001) gastric ulcer index, and ame-
liorated gastric mucosal injury by ethanol in a dose-de-
pendent manner when compared to ethanol control. The
treatment also significantly increased (p<0.001) the SOD,
CAT, and TAC levels when compared with control. Cyto-
 protection is generally achieved by generation of prosta-
glandins or blockade of back diffusion of H+ ions.[26] The
flavonoids, tannins, and saponins in the plant extract may
have exhibited their antioxidants capacity by preventing
ethanol-induced depletion of the antioxidants and also
enhanced the levels of enzymatic and non-enzymatic anti-
oxidants. Tannins avert gastric ulcer occurrence by causing
protein precipitation and microvascular constriction at the
ulcer margin that is further augmented by its astringent ac-
ction, which creates an impervious protective layer on the
gastric mucosal epithelium to resist chemical irritation or
toxins that result in lipid peroxidation expressed by eleva-
tion of MDA, an index of PMN accumulation in the gas-
tric lumen.[27, 7] The results of this study show an elevat-
ed VEGF level after oral intake of absolute ethanol in rats.
It was argued that VEGF is elevated to dilute ethanol and oth-
er ulcerogenic products as a gastric protective mechanism.
[22, 31, 23] VEGF prevents gastric mucosal injury by creating
dilution of reactive oxygen species and inhibition of the expression
of cyclooxygenases[21] lead to disturbance in gastric micro-
vascular circulation to promote hemorrhagic necrosis and
depletion of gastric mucus, a necessary factor in gastric
mucosal defense. The erosion of the gastric mucus leads to
sodium ion influx, potassium ion outflow, increase pepsin
secretion, and elevation in gastric hydrochloric concentra-
tion and histamine, with their eventual discharge into the
gastric lumen.[27, 7] The results of this study show an elevated
VEGF level after oral intake of absolute ethanol in rats. It
was argued that VEGF is elevated to dilute ethanol and other
ulcerogenic products as a gastric protective mechanism.

Ranitidine is a reversible, competitive blocker of histamine
at H2 receptor on the parietal cells to decrease gastric acid
secretion, reduce gastric juice volume, and reduce H+ con-
centration.[33, 34] Based on these potentials, it probably ex-
plains why in this study, macroscopic and histologic dam-
ages in the gastric mucosa of ranitidine-treated group was
reduced when compared with control.

Conclusion
The ethanol stem bark extract of B. dalzielii H attenuates
ethanol-induced gastric mucosal damage through rein-
forcement of the antioxidant system, upregulation in the
expression of VEGF, and downregulation of MDA and TNF-α
in gastric tissue of albino rats.

Disclosures
Acknowledgments: The authors sincerely appreciate the contributions of Mr. Ibrahim Wiam of the Department of Veterinary Histology, Faculty of Veterinary Medicine, for preparing the slides and Dr. Bukar M, Consultant Pathologist, University of Maiduguri Teaching Hospital, for interpreting the slides. Thank you all.

Ethics Committee Approval: This study was approved by the Ethics Committee on Animal Experimentation, College of Medical Sciences, University of Maiduguri.

Peer-review: Externally peer-reviewed.

Conflict of Interest: None declared.

Authorship contributions: Concept – A.H.Y.; Design – A.H.Y.; Super-
vision – N.S.; Materials – M.B.; Data collection &/or processing – A.A.;

References
1. Tarnawski AS. Cellular and molecular mechanisms of gastroin-

