Eradication of *Helicobacter pylori* in Patients with Inflammatory Bowel Disease for Prevention of Recurrences - Impact on the Natural History of the Disease

© Modesto Varas Lorenzo, Fernando Muñoz Agel, Elena Sánchez-Vizcaíno Mengual

1Department of Gastroenterology, Hospital Sanitas CIMA, Barcelona, Spain; Department of Hepatology and Gastroenterology, Hospital; Universitario Teknon Quirón Salud, Barcelona, Spain; Universitat Oberta de Catalunya, Facultat de Ciencies de la Salut, Barcelona, Spain

2Endoscopy Unit and Department of Gastroenterology Hospital Sanitas CIMA, Barcelona, Spain

3Medical Writing and Research Projects Management, Santa Coloma de Gramanet, Barcelona, Spain

Abstract

Objectives: Although, currently, it turns to speculate on infectious etiology of Crohn’s disease (CD), many studies have attributed a lower prevalence of *Helicobacter pylori* infection in patients with inflammatory bowel disease (IBD). The aim of this retrospective study was determining the benefit of detection and eradication of *H. pylori* in patients with IBD and its potential impact on the natural history of the disease.

Methods: Retrospective study of 125 patients: 20 of the control group and 105 with gastrointestinal disorders. The 13C-urea breath test was required as a routine procedure for all patients before receiving any dose of sulfasalazine.

Results: Case group had an average of infection with *H. pylori* (42%), similar to the control group (40%). IBD showed a similar positivity to 13C-urea breath test (OR=0.99; 95% CI: 0.32–3.05). Higher incidence was found in microscopic colitis (46%) and CD (52%), than in ulcerative colitis (40%), without substantial differences. Patients treated for *H. pylori*, reduced the number of recurrences.

Conclusion: The eradication of *H. pylori* in patients with IBD may have a positive impact on the natural history of the disease, although more prospective studies are needed.

Keywords: Inflammatory bowel disease, Crohn’s disease, 13C breath test, Helicobacter pylori sulfasalazine

EIGHTEEN YEARS AGO, PUSPOK ET AL.[1] PUBLISHED THAT OVER 38% OF PATIENTS WITH CROHN’S DISEASE (CD) HAD *HELICOBACTER PYLORI* IN THE Gastric biopsies taken along their study. Mantzaris’ group, at the American DDW in Orlando (Florida), reported that all patients with CD and *H. pylori* eradicated remained in remission. These latest data have not been reproduced so far.[2]

Since then, many papers about the frequency and prevalence of *H. pylori* in patients with inflammatory bowel disease (IBD) have been published. The diagnostic methods have been through serology,[3–8] biopsies,[2, 9–18] 13C-urea breath test (13C-UBT),[19–28] and the combination of the above. In a meta-analysis, the conclusion was the lower prevalence of *H. pylori* infection in IBD in children 27.1% and adults 40.9% as well,[28] and a high frequency of endoscopic and histological injuries (above all and focal),[13, 14, 17, 18] These findings were attributed to the maintenance treatment with sulfasalazine, structurally composed of a sulfonamide (sulfapyridine) and 5-aminosalicylic acid (5-ASA)
joined by an azo bond, and its antibactericidal effect, but not related to the treatment with mesalazine. In spite of there are some studies on the protective effect of 5-ASA and the antibiotic therapy, this still remains controversial. Only some Italian authors, using the 13C-UBT for H. pylori detection, their results showed no statistically significant differences between the prevalence of H. pylori infection in patients with IBD and controls. In our service, as a routine procedure, 13C-UBT (Otsuka method) has been required to all patients with gastrointestinal (GI) disorders to detect the presence of H. pylori and avoiding leaving affected patients without treatment (previously, none of them received any doses of sulfasalazine). In our clinical experience, we have found that many patients with IBD have positive 13C-UBT tests for the presence of H. pylori-pos, similar to healthy patients. This fact led us to perform a prospective and longitudinal study to analyze our results with the aim of determining, through the results of the 13C-UBT, the frequency of H. pylori active infection in patients with GI disorders compared with a control group. Furthermore, determine if the H. pylori eradication in H. pylori-pos patients showed some relation with the number of recurrences and some effect over the natural history of the disease.

Methods

For the selection of the patients, a retrospective, multicenter observational analysis was carried out of a database of a center with local CEIC. The purpose of the study was to analyze the breath test 13C-UBT (Otsuka method) results of 125 patients including 20 control and 105 patients.

Control Group

A total of 20 asymptomatic patients without gastric pathology recruited in the outpatient gastroenterology service, 12 women and 8 men (aged 20–83 years, average 50.6).

Case Group

A total of 105 patients were selected with GI disorders: Celiac disease: n=10, seven women and three men (aged 10–79 years, average 39); microscopic colitis: n=15, 10 women and 5 men (aged 20–72 years, average 50); ulcerative colitis: n=40, 23 women and 17 men (aged 26–74 years, average 37.3); and CD: n=40, 20 women and 20 men (aged 17–60 years, average 36.6).

Inclusion Criteria

Patients with consistent anatomopathological diagnosis of GI disorders (endoscopy, biopsy and laboratory tests), patients with celiac disease that did not take any gluten-free diet before 13C-UBT, and patients with microscopic colitis, ulcerative colitis, and CD, in remission, receiving maintenance therapy with probiotics, 5-ASA or azathioprine, after taking them in a staggered dose were included in this study.

Exclusion Criteria

Patients in treatment with sulfasalazine as chronic maintenance therapy or having previously received antibiotic treatment, and patients with indeterminate colitis (10% of our entire series), were discarded. This condition was included for avoiding the potential protective effect against H. pylori infection, mentioned in the literature reviewed. A granulocyte apheresis was carried out in some patients with UC 4/40 (10%) and CD 4/40 (10%).

The 40% (42/105) of cases undergone gastroscopy and biopsy and the data were consistent with the positivity or negativity of 13C-UBT that was considered negative when the result was less or equal to 2.5% (therefore, absence of H. pylori-neg) and positive when this was >2.5%. The specialist who performed the 13C-UBT was blind for the diagnosis of patients included in this study. Patients with H. pylori-pos were treated for 10 days with one of these triple therapies:

- OCA: Omeprazole 20 mg, clarithromycin 500 mg, and amoxicillin 1 g every 12 h.
- OFA: Omeprazole-20 mg, 500 mg metronidazole, and amoxicillin 1 g every 12 h.

None of the 80 patients with IBD: Ulcerative colitis (40 cases) and CD (40 cases) received previously any doses of sulfasalazine.

All were followed up for 48 months. The number of recurrences was assessed.

Statistical Analysis

Proof of the Student’s t-test for quantitative variables or Fisher’s exact test for qualitative variables was used. Odds ratio (OR) for comparing the results obtained with the 13C-UBT in subgroups of patients with IBD and celiac disease or microscopic colitis compared to those observed in the control group and adjusting for age and sex distributions were estimated by logistic regression (STATA 10.1).

Results

13C-UBT

In the control group (n=20), the positivity of H. pylori was 40% (8/20). In the case group (n=105), the average of positivity was 42% (47/105). In detail: Patients with microscopic colitis 46% (7/15) and celiac disease 30% (3/10), in the ulcerative colitis group 40% (16/40), and CD group 52% (21/40).
In overall, in the IBD group, the positivity was 46% (37/80). Comparing the results with the control group, after controlling for age and sex: Patients with IBD showed a similar positivity to 13C-UBT (OR=0.99; 95% CI: 0.32–3.05). Patients with celiac disease or microscopic colitis, compared to controls, gave similar results (OR=0.93; 95% CI: 0.25–3.44).

Treatments

In the IDB group, 76% (28/37) of patients with *H. pylori*-pos (14 with UC and 14 with EC) had an effective eradication with one of the triple therapies (OCA or OFA) for 10 days and a follow-up of 48 months. Only in 9 patients (24%), *H. pylori* was not eradicated. The clinical follow-up of recurrences was carried out every 3 months, for an average of 48 months (4 years) (range 2–7 years).

The 28 patients with effective *H. pylori* eradication, were compared with the 10 patients of the IDB group with a negative result of 13C-UBT (H. pylori-neg) 23% (10/43) of patients with *H. pylori*-neg, which, therefore, they did not receive any treatment doses for *H. pylori* eradication. Along the follow-up period, 48 months (median: 36 months), of patients in clinical remission (effective treatment eradication), 78.6% with UC (11/14) and 93% with CD (13/14), and 86% with IBD (24/28) (95% CI 73–99%), did not show any clinical recurrences of the disease, while patients with no treatment effective eradication, showed recurrences. Only 40% of patients with *H. pylori* - (4/10) (95% CI 9.6–70%), p<0.05, no outbreak was observed (Fig. 1).

Discussion

Although, currently, it turns to speculate on infectious etiology of CD,[7] reviewed in this study, many studies have attributed the low prevalence of *H. pylori* in patients with IBD to the effect of chronic maintenance therapy with sulfasalazine (bactericidal) instead of mesalazine. Moreover, some authors also believe in the protective effect of 5-ASA,[20] unlikely, because it is released beyond the stomach.

The eradication of *H. pylori* in patients with IBD appears to have a beneficial effect on the natural history of the disease, although studies with more cases would be needed. Numerous studies have studied the frequency and prevalence of *H. pylori* infection in patients with IBD using different diagnostic methodologies.

Serology in Peripheral Blood (IgG and IgA Antibodies)

A lower prevalence of *H. pylori*-pos in IBD compared to the control group, with statistically significant results in most comparative studies is shown.[8] The largest prospective comparative study, 100 cases included per group,[3] shows statistically significant differences not attributable to treatment with sulfasalazine (*H. pylori* diagnostic by IgA antibody). In another study, in which the diagnosis was performed by IgG determining,[4] results were not statistically significant.

GI biopsies with or without *H. pylori* determination:[1, 9–17, 29] The largest prospective comparative study[12] demonstrated a 63% of endoscopic lesions on CD and chronic gastroduodenitis not associated with *H. pylori-pos*. Another controlled study,[18] but with differences in age, shows statistically significant differences attributable to antibiotic treatment and endoscopic lesions in 92.2% of CD patients.

13C-UBT in the expired breath:[18–27] The largest prospective and controlled study did not demonstrate statistically significant differences,[19] while Asian studies did (Table 1).[21, 24, 27, 30, 31]

Combination of Several Methods

Serology and biopsies,[13] serology and 13C-UBT,[18] biopsies and 13C-UBT.[21, 22] A large, controlled study showed a statistically significant difference.[21]

When most sensitive and specific methods are utilized, less convincing results are obtained. Few written reports have reported the substantial difference. Our results suggest that the frequency is similar when compared to asymptomatic subjects and even, tends to be higher in patients with CD than with UC and controls. In comparison with asymptomatic patients, after controlling for the different age and sex, regarding the distribution among groups, we did not
find any difference. In fact, in our study patients with IDB and \emph{H. pylori} eradicated, showed clinical improvement and
reduced the number of recurrences over 4 years follow-up.
Hence, it seems that \emph{H. pylori} could play a role in the patho-
genesis of IBD and the natural history of the disease.
However, our results are limited by the number of patients
studied (similar sample size to previously published works
(Table 1)) as is reflected in the confidence intervals (contain
the null value but is broad).

Some studies have identified other species of \emph{H. pylori} in
the digestive tract of patients with IDB, CD, or UC.[32–37]

\begin{table}
\centering
\begin{tabular}{|l|l|l|l|l|}
\hline
\textbf{Author} & \textbf{Diagnostic test} & \textbf{Cases and controls} & \textbf{Results} & \textbf{Study design} \\
\hline
Pearce et al.[18] & 13C-UBT serology & 42 CD/51 UC & 11.9\% and 21.6\% & P \\
& 40 IBD & & 25\% (NS) & \\
& 72 IBD & & 47\% & P and C \\
& 72 controls & & 61\% (NS) & \\
& & & 65\% treated with & \\
& & & sulfasalazin 34\% & con 5-ASA \\
& & & P=0.017 & \\
Prónai et al.[20] & 13C-UBT & 133 IBD versus COPD & 12.78\% & C \\
& & & 66.7\% & \\
& & & No controls & \\
Hwang et al.[21] & 13C-UBT biopsy & 97 IBD 270 controls & 29\% & \\
& & & 54\% (P<0.001) & \\
& & & 8\% & \\
& & & 42\% (P<0.05) & \\
& & & C53\% versus 8\% duodenal wounds & \\
& & & & \\
Oliveira et al.[16] & 13C-UBT biopsy & 43 CD 74 controls & 51.2\% & P and C \\
& & & 70.3\% (NS) & \\
& & & 14\% versus 1.4\% & \\
Song et al.[24] & 13C-UBT & 316 IBD 316 controls & 25\% & C and \\
& & & 52.5\% (P<0.001) & Multicentric \\
& & & & \\
& & & & \\
Lorenzo et al.[25] & 13C-UBT biopsy & 30 CD & 50\% & P and C \\
& & 20 controls & 40\% & \\
& & 30 UC & 37\% versus 40\% & \\
& & 60 IBD & 43\% versus 40\% (NS) & \\
& & & & \\
Pellicano et al.[26] & 13C-UBT & 20 IBD & 60\% & P and C \\
& & 29 controls & 41\% (NS) & \\
& & 208 IBD & 19.7\% & \\
& & 416 controls & 48.8\% (S) & \\
& & 229 IBD & 27.1\% & \\
& & 248 controls & 47.9\% (S) & \\
Xiang et al.[30] & 13C-UBT & 153 UC & 30.5\% & \\
& & 121 controls & 57\% (S) & \\
Jin et al.[31] & & & & \\
\hline
\end{tabular}
\caption{Bibliographic review of studies with 13C-UBT as the diagnostic test, alone or combined with biopsy or serology}
\end{table}

CD: Crohn’s disease, IBD: Inflammatory bowel disease, UC: Ulcerative colitis, COPD: Chronic obstructive pulmonary disease, P: Prospective, C: Controlled and matched by age and gender, NS: Not significant, S: Significant.

Recently, it has been speculated again on the infectious etiolo-
ogy of IBD,[38, 39] attributing potential pathogenesis to some Helicobacter species or Mycobacterium avium paratuber-
culosis.[40–42]

Some sources do not assign any role to the effect of antibi-
otic treatment. The implication of the \emph{H. pylori} presence still
remains controversial.[27, 29] Other researchers attribute the low
prevalence of \emph{H. pylori} infection in patients with IBD, to previ-
ous antibiotic treatment.[14, 35, 41, 44] Triantafillidis et al. match
with these results, because patients who had not taken antibi-
osti a prevalence of 55\% versus 55.1\% of controls.[43]
Taking into account that *H. pylori* causes granulomatous gastritis in the antrum, however, patients with CD disease are not often infected by this microorganism. Only one patient with CD of our study (1/40, 2.5%) showed the presence of the disease located at the stomach, and regarding *H. pylori*, the macroscopic vision, biopsy, and 13C-UBT were negative. In addition, frequent endoscopic lesions, focal gastritis, focal cryptitis, and CD8 focal gastritis have recently been described in patients with IBD. Most of our patients with IBD and *H. pylori*-pos eradicated, remained asymptomatic for an average of 48 months of follow-up. Only 4 patients (14%) had clinical recurrences in monitoring, confirmed by endoscopy.

It is worth noting that an oligosymptomatic patient, with UC and *H. pylori*-pos, had a major outbreak of diarrhea caused by *Clostridium botulinum* and after eradication, developed IBD; as recently it has published in other studies.

A recent review, has arrived at the same conclusion, pointing that the relationship between *H. pylori* infection and IBD still remains controversial. In spite of other groups do not support our thesis, the results obtained provide enough data to take them into consideration and might guide new studies to clarify this possible relationship (Table 1).

Acknowledgements: We would like to thank E. Parramón for the 13C-UBT analysis of the samples of this study.

Disclosures

Ethics Committee Approval: Retrospective study.

Peer-review: Externally peer-reviewed.

Conflict of Interest: None declared.

References

38. Fallone CA, Bitton A. Is IBD caused by Helicobacter pylori infection? Inflamm Bowel Dis 2009;14:537–8. [CrossRef]
41. Abubakar I, Myhill D, Aiyu SH, Hunter PR. Detección de Mycobacterium avium subespecie paratuberculosis en pacientes con enfermedad de Crohn utilizando técnicas basadas en la detección de ácidos nucleicos: Una revisión sistemática y meta-análisis. Inflama Bowel Dis 2008;14:401–10. [CrossRef]